Explorando a Volatilidade média móvel ponderada exponencialmente é a medida mais comum de risco, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para avaliar o risco futuro.) Usamos os dados atuais do preço das ações da Googles para calcular a volatilidade diária com base em 30 dias de estoque de dados. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel ponderada exponencialmente (EWMA). Vendas históricas. Volatilidade implícita Primeiro, vamos colocar essa métrica em um pouco de perspectiva. Existem duas abordagens amplas: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é o prólogo que medimos a história na esperança de que seja preditivo. A volatilidade implícita, por outro lado, ignora o histórico que resolve para a volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que de forma implícita, uma estimativa consensual da volatilidade. (Para leitura relacionada, veja Os Usos e Limites de Volatilidade.) Se nos concentrarmos apenas nas três abordagens históricas (à esquerda acima), eles têm dois passos em comum: Calcule a série de retornos periódicos. Aplica um esquema de ponderação. Primeiro, nós Calcule o retorno periódico. Isso geralmente é uma série de retornos diários, em que cada retorno é expresso em termos compostos continuamente. Para cada dia, tomamos o log natural da proporção dos preços das ações (ou seja, preço hoje dividido por preço ontem, e assim por diante). Isso produz uma série de retornos diários, de u i to u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando a volatilidade para avaliar o risco futuro), mostramos que, sob um par de simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Observe que isso resume cada um dos retornos periódicos, então divide esse total pelo Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos ao quadrado. Dito de outra forma, cada retorno quadrado recebe um peso igual. Então, se o alfa (a) é um fator de ponderação (especificamente, um 1 m), então uma variância simples parece algo assim: O EWMA melhora a diferença simples. A fraqueza dessa abordagem é que todos os retornos ganham o mesmo peso. O retorno de ontem (muito recente) não tem mais influência na variação do que o retorno dos últimos meses. Esse problema é corrigido usando a média móvel ponderada exponencialmente (EWMA), na qual os retornos mais recentes têm maior peso na variância. A média móvel ponderada exponencialmente (EWMA) apresenta lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno ao quadrado é ponderado por um multiplicador da seguinte forma: por exemplo, RiskMetrics TM, uma empresa de gerenciamento de risco financeiro, tende a usar uma lambda de 0,94 ou 94. Neste caso, o primeiro ( Mais recente) o retorno periódico ao quadrado é ponderado por (1-0.94) (. 94) 0 6. O próximo retorno ao quadrado é simplesmente um múltiplo lambda do peso anterior neste caso 6 multiplicado por 94 5,64. E o terceiro dia anterior é igual (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser inferior a um) do peso dos dias anteriores. Isso garante uma variação ponderada ou tendenciosa em relação a dados mais recentes. (Para saber mais, confira a Planilha do Excel para a Volatilidade dos Googles.) A diferença entre a simples volatilidade e o EWMA para o Google é mostrada abaixo. A volatilidade simples efetivamente pesa cada retorno periódico em 0.196 como mostrado na Coluna O (tivemos dois anos de dados diários do preço das ações. Isso é 509 devoluções diárias e 1 509 0.196). Mas observe que a coluna P atribui um peso de 6, então 5.64, depois 5.3 e assim por diante. Essa é a única diferença entre variância simples e EWMA. Lembre-se: depois de somar toda a série (na coluna Q), temos a variância, que é o quadrado do desvio padrão. Se queremos volatilidade, precisamos lembrar de assumir a raiz quadrada dessa variância. Qual é a diferença na volatilidade diária entre a variância e EWMA no caso do Googles. É significativo: a variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para obter detalhes). Aparentemente, a volatilidade de Googles estabeleceu-se mais recentemente, portanto, uma variação simples pode ser artificialmente alta. A diferença de hoje é uma função da diferença de dias Pior. Você notará que precisamos calcular uma série longa de pesos exponencialmente decrescentes. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que a série inteira se reduz convenientemente a uma fórmula recursiva: Recursiva significa que as referências de variância de hoje (ou seja, são uma função da variância dos dias anteriores). Você também pode encontrar esta fórmula na planilha e produz exatamente o mesmo resultado que o cálculo de longitude. Diz: A variação de hoje (sob EWMA) é igual a variação de ontem (ponderada por lambda) mais retorno de ônibus quadrado (pesado por um menos lambda). Observe como estamos apenas adicionando dois termos em conjunto: variância ponderada de ontem e ponderada de ontem, retorno quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como RiskMetrics 94) indica decadência mais lenta na série - em termos relativos, teremos mais pontos de dados na série e eles vão cair mais devagar. Por outro lado, se reduzirmos a lambda, indicamos maior deterioração: os pesos caem mais rapidamente e, como resultado direto da rápida deterioração, são usados menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque e a métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variância historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variação simples é que todos os retornos recebem o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo é diluído por dados distantes (menos relevantes). A média móvel ponderada exponencialmente (EWMA) melhora a variação simples ao atribuir pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso aos retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite a Tartaruga Bionica.) Um psicólogo de riqueza é um profissional de saúde mental especializado em questões relacionadas especificamente com indivíduos ricos. O branqueamento de capitais é o processo de criar a aparência de grandes quantias de dinheiro obtidas de crimes graves, tais como. Métodos de contabilidade que se concentram em impostos, em vez de aparência de demonstrações financeiras públicas. A contabilidade tributária é regida. O efeito boomer refere-se à influência que o cluster geracional nascido entre 1946 e 1964 tem na maioria dos mercados. Um aumento no preço das ações que muitas vezes ocorre na semana entre o Natal e o Ano Novo039s Day. Existem inúmeras explicações. Um termo usado por John Maynard Keynes usado em um de seus livros econômicos. Em sua publicação de 1936, a Teoria Geral do Emprego. Filtro Exponencial Esta página descreve a filtragem exponencial, o filtro mais simples e popular. Esta é parte da seção Filtragem que faz parte de um Guia de Detecção e Diagnóstico de Falhas. Visão geral, constante de tempo e equivalente analógico. O filtro mais simples é o filtro exponencial. Possui apenas um parâmetro de sintonia (diferente do intervalo de amostra). Exige o armazenamento de apenas uma variável - a saída anterior. É um filtro IIR (autoregressivo) - os efeitos de uma mudança de entrada se deterioram exponencialmente até que os limites de exibição ou a aritmética do computador ocultem. Em várias disciplinas, o uso deste filtro também é referido como otimização exponencial 82201. Em algumas disciplinas, como a análise de investimentos, o filtro exponencial é chamado de uma média móvel 8220 ponderada exponencialmente 8221 (EWMA) ou apenas uma média móvel 8220 (EMA). Isso abusa a tradicional terminologia média 8221 de ARMA 8220 da análise de séries temporais, uma vez que não há histórico de entrada que seja usado - apenas a entrada atual. É o equivalente de tempo discreto da ordem 8220 da primeira ordem lag8221 comumente usado na modelagem analógica de sistemas de controle de tempo contínuo. Nos circuitos elétricos, um filtro RC (filtro com um resistor e um capacitor) é um atraso de primeira ordem. Ao enfatizar a analogia com os circuitos analógicos, o parâmetro de sintonia única é a constante do tempo 8220, 8221, geralmente escrito como a letra grega Tau (). De fato, os valores nos tempos de amostra discretos coincidem exatamente com o intervalo de tempo contínuo equivalente com a mesma constante de tempo. A relação entre a implementação digital e a constante de tempo é mostrada nas equações abaixo. Equações de filtro exponencial e inicialização O filtro exponencial é uma combinação ponderada da estimativa anterior (saída) com os dados de entrada mais recentes, com a soma dos pesos iguais a 1 para que a saída corresponda à entrada no estado estacionário. Seguindo a notação do filtro já introduzida: y (k) ay (k-1) (1-a) x (k) onde x (k) é a entrada bruta no tempo ky (k) é a saída filtrada no tempo ka É uma constante entre 0 e 1, normalmente entre 0,8 e 0,99. (A-1) ou a vezes é chamado de constante de deslocamento 82208221. Para sistemas com um passo de tempo fixo T entre amostras, a constante 8220a8221 é calculada e armazenada por conveniência apenas quando o desenvolvedor do aplicativo especifica um novo valor da constante de tempo desejada. Para sistemas com amostragem de dados em intervalos irregulares, a função exponencial acima deve ser usada com cada passo de tempo, onde T é o tempo desde a amostra anterior. A saída do filtro geralmente é inicializada para coincidir com a primeira entrada. À medida que a constante de tempo se aproxima de 0, a vai para zero, então não há filtragem 8211, a saída é igual à nova entrada. À medida que a constante de tempo é muito grande, as abordagens 1, de modo que a entrada nova é quase ignorada 8211 filtragem muito pesada. A equação do filtro acima pode ser reorganizada para o seguinte equivalente preditor-corretor: Este formulário torna mais evidente que a estimativa variável (saída do filtro) é predita como inalterável da estimativa anterior y (k-1) mais um termo de correção baseado No inesperado 8220innovation8221 - a diferença entre a nova entrada x (k) e a predição y (k-1). Este formulário também é o resultado de derivar o filtro exponencial como um caso especial simples de um filtro de Kalman. Qual é a solução ideal para um problema de estimativa com um conjunto particular de pressupostos. Etapa de resposta Uma maneira de visualizar a operação do filtro exponencial é traçar sua resposta ao longo do tempo para uma entrada de etapa. Ou seja, começando com a entrada e saída do filtro em 0, o valor de entrada é de repente alterado para 1. Os valores resultantes são traçados abaixo: no gráfico acima, o tempo é dividido pela constante de tempo do filtro tau para que você possa mais facilmente prever Os resultados para qualquer período de tempo, para qualquer valor da constante de tempo do filtro. Após um tempo igual à constante de tempo, a saída do filtro sobe para 63,21 do seu valor final. Após um tempo igual a 2 constantes de tempo, o valor sobe para 86,47 de seu valor final. As saídas após tempos iguais a 3,4 e 5 constantes de tempo são 95,02, 98,17 e 99,33 do valor final, respectivamente. Uma vez que o filtro é linear, isso significa que essas porcentagens podem ser usadas para qualquer magnitude da mudança de passo, não apenas pelo valor de 1 usado aqui. Embora a resposta gradual em teoria tenha um tempo infinito, do ponto de vista prático, pense no filtro exponencial como 98 a 99 8220done8221 respondendo após um tempo igual a 4 a 5 constantes de tempo de filtro. Variações no filtro exponencial Existe uma variação do filtro exponencial chamado 8220nonlinear exponencial filter8221 Weber, 1980. destinado a pesadamente filtrar o ruído dentro de uma certa amplitude 8220typical8221, mas depois responder mais rapidamente a mudanças maiores. Copyright 2010 - 2013, Greg Stanley Compartilhe esta página:
No comments:
Post a Comment